AI答非所问?你的知识库为什么不好用?4500字长文带你读懂rag发展史

学习 

文章摘要:本文介绍了RAG(检索增强生成)技术的演进历程,从最初的Naive RAG到Advanced RAG、Modular RAG、Graph RAG以及最后的Agentic RAG。文章详细描述了每种形态的特点、技术突破、应用场景和局限性,并提到了文档处理在RAG系统中的重要性和相关开源项目的应用。最后,文章探讨了RAG技术的实用化和落地应用的前景,以及AI自主决策在RAG未来发展中的重要作用。 关键词:RAG、科技前沿、AI答非所问、知识库、发展历程 一、引言 近年来,人工智能技术在自然语言处理领域取得了显著进展,其中RAG(检索增强生成)技术备受关注。RAG通过集成实时数据检索来增强大型语言模型(LLM),以提供与上下文相关的最新响应。本文旨在带您了解RAG技术的发展历程,从最初的Naive RAG到Agentic RAG,探究RAG的进化历程和实用化前景。 二、RAG的初步形态:Naive RAG Naive RAG是RAG技术的初步形态,基础但功能相对简单。它依赖于简单的基于关键字的检索技术从静态数据集中获取文档,然后利用这些文档增强语言模型的生成功能。虽然Naive RAG存在局限性,如缺乏上下文感知、碎片化输出和可扩展性问题,但它为集成检索与生成提供了关键的概念验证,为更复杂的范式奠定了基础。 三、RAG的进阶形态:Advanced RAG Advanced RAG是RAG技术的重要进步,实现了密集向量搜索和上下文重新排序等技术突破。它能够在用户查询和检索到的文档之间实现更好的语义对齐,从而提供更精准的答案。然而,Advanced RAG仍然面临计算开销和可扩展性受限等挑战,尤其是在处理大型数据集或多步骤查询时。 四、RAG的模块化发展:Modular RAG Modular RAG是RAG技术的重要发展方向,它将RAG系统拆分为可替换的模块,如检索器、生成器和工具接口,按需定制。这种灵活性使得Modular RAG能够适应不同的用例,提高了系统的可配置性和适应性。Modular RAG的出现打破了“一刀切”的解决方案,成为企业落地RAG的主流选择。 五、RAG的关系化拓展:Graph RAG Graph RAG是RAG技术的关系化拓展,通过集成基于图的数据结构来扩展传统的检索增强生成系统。它能够利用图形数据中的关系和层次结构来增强多跳推理和上下文丰富性,实现更丰富、更准确的生成输出。然而,Graph RAG也面临着可扩展性、数据依赖性和集成复杂性的挑战。 六、RAG的终极形态:Agentic RAG Agentic RAG作为RAG技术的终极形态,追求AI自主决策的能力。它通过智能代理技术实现AI系统的自主决策能力,能够自主处理复杂任务、自适应调整参数和自主优化性能。Agentic RAG的出现将带来RAG技术的重大突破,为实现真正的智能化应用提供支持。 七、文档处理在RAG系统中的重要性和相关开源项目应用 在RAG系统中,文档处理是一个核心模块,其质量直接影响后续的检索结果和回答生成效果。为了提升文档处理的效果,出现了许多开源项目,如微软的Markdown和基于模型的分片处理Agentic Chunking等。这些项目为RAG系统的文档处理提供了有效的工具和方法。 八、结论与展望 RAG技术作为自然语言处理领域的重要突破,经历了从Naive RAG到Agentic RAG的演进历程。未来,随着技术的不断发展,RAG系统将更加实用化、智能化和自主化。我们将继续关注RAG技术的发展,期待它在各个领域带来更大的突破和创新。

为什么不推荐在 Django 的orm查询中使用 .first()查询唯一记录

学习 

Django是一个流行的Python框架,其ORM(对象关系映射)简化了数据库交互。对于查询唯一记录,推荐使用.get()而不是.first(),因为.first()会引入不必要的排序操作,可能影响性能。然而,如果查询字段有索引,排序的性能开销通常可以忽略。Django的ORM允许开发者使用Python代码操作数据库,无需编写复杂的SQL语句。在使用Django的ORM进行查询时,需要注意索引的使用,因为索引可以显著提高查询性能。此外,可以在Django的settings.py中设置开启ORM查询时的SQL日志,以便性能分析和调试。

基于Reflex开发一个图片风格转换demo(1)

学习 

介绍了一个基于Python的Web玩具框架Reflex,该框架允许开发者使用Python构建全栈Web应用,无需熟悉前端技术。文章详细描述了Reflex的安装、初始化项目、运行过程,并提到了该框架的优势如纯Python、简单易用、快速开发等。同时,文章还展示了使用Reflex开发一个简单的图片风格转换demo的过程,并强调了该框架对于不熟悉前端技术的Python开发者来说非常实用。

阅读anthropic building-effective-agents 文章有感而发

学习 

作者最近对开源平台上的一篇关于构建有效代理的文章进行了阅读,引发了对智能创作、工作流程和代理的思考。文章讨论了构建智能代理的几种流程,包括从用户查询到LLM的处理过程以及创建智能工作流的经验。作者关注到了通过预定义代码路径编排LLM和工具的系统工作流程的复杂性。在开发智能代理时,重点在于有足够聪明的模型和接口定义清晰明确的工具。作者在探讨如何改善模型工具使用过程中的模糊性问题,如数据检索和合并时可能出现的问题,强调了接口定义描述清晰的重要性。最后作者讨论了模型返回结果的格式化控制问题以及公众号的关注等后续内容。整体来看,这是一篇关于AI和科技前沿领域内的思考和探讨的文章。

还能这样?命令行输入错误,骂它就能解决?

学习 

本文介绍了一款有趣的命令行工具“小可爱”,它能在用户输入错误的命令时自动进行修正。安装方法简单易行,支持多种操作系统。工具自带了160多种规则,并能自定义规则。使用简单,只需输入特定词汇即可启动纠错功能,还可以选择自动执行或多次尝试。更新和卸载也很方便。

从“代码恐惧”到“得心应手”:命令行错误不再难

学习 

本文介绍了一款命令行工具wut,基于大语言模型(LLM)技术,能够帮助用户理解上一个命令的输出结果。wut能够解析终端中的任何内容,包括堆栈跟踪、错误代码和日志信息,并以清晰易懂的方式解释。安装wut非常简单,可以通过pipx进行安装,并可选择使用OpenAI或Anthropic的Claude作为LLM提供商。使用方法方面,wut必须在tmux或screen会话中运行,通过键入wut获取解释。此外,wut还提供了查询功能,可针对具体问题提供解答。总之,对于经常使用命令行且希望轻松解析和理解命令输出的用户来说,wut是一款非常实用的工具。

你这个django正不正宗,怎么看起来像flask?

学习 

小琪和小胖尝试使用新的工具nanodjango来简化Django应用开发。nanodjango允许在一个文件中完成整个Django应用,包括模型、视图和管理后台。他们展示了如何使用nanodjango快速搭建一个计数器应用,并演示了API支持、异步视图和管理后台的便捷性。小胖和小琪对这个工具感兴趣并讨论如何使用它改进工作流程和设想新项目。几天后,他们使用nanodjango完成了一个小工具,并展示了其潜力。当需要扩展项目时,可以使用命令将其转换为完整的Django项目,保持灵活性和稳定性。这个开源工具对于Python和Django开发者来说非常有用。摘要聚焦于工具的便捷性、应用场景以及与Django框架的关系和潜力优势,旨在强调该工具与传统Django框架的区别与优势。

fast-graphrag 探索(4)- 我把模型服务干崩了!

学习 

文章摘要:本文主要描述了小胖在使用fast-graphrag模型处理研报数据的过程中所遇到的问题及解决方法。文章首先介绍了小胖按照官方example调整模型参数并写入研报数据的过程,接着出现了生成数据文件过小、数据丢失的问题,通过仔细检查代码,发现了n_checkpoints参数设置不当导致的问题。然后文章描述了小胖通过限制并发量来解决本地模型中转服务挂掉的问题。最终,小胖成功解决了所有问题,实现了程序的平稳运行。文章还介绍了fast-graphrag模型的开源性质和其在处理研报数据方面的应用。

大升级!LLM应用监控、测试、优化一步到位!

学习 

本文介绍了使用langfuse工具来监控、测试和优化LLM(大模型)应用的方法。文章详细描述了langfuse的功能,包括LLM可观测性、提示管理、LLM评估、数据集管理等。文章还介绍了langfuse最近的v3.0.0大版本更新,包括引入Async Worker和Redis提高系统性能,使用Clickhouse和S3/Blob Storage处理不同类型的数据等。此外,文章还展示了如何使用langfuse的云服务来追踪和管理LLM应用,包括安装sdk、使用trace功能、提示词管理等。总结部分鼓励读者分享使用langfuse的经验和想法,并欢迎大家关注公众号。关键词:python、AI、开源、好玩的项目、科技前沿、大升级、LLM应用监控优化。

腾讯云智能结构化OCR实战:从图片到结构化数据的高效转换

学习 

本文介绍了作者使用腾讯云智能结构化OCR服务的实战体验。文章首先描述了作者的需求背景,即汇总多个理财子公众号发布的理财产品的数据。由于遇到一些识别不准确和费用较高的问题,作者尝试使用腾讯云的智能结构化OCR服务来解决问题。文章详细介绍了安装SDK、代码实现、验证和web部署的过程,并分享了使用腾讯云智能结构化OCR服务的体验。整体上,腾讯云智能结构化OCR服务用起来比较简单,相较于传统OCR,多了一层结构化数据的处理。文章最后欢迎大家在评论区留言分享对OCR应用的经验和看法。